

Eigenvalues and Eigenvectors - Problems 2

For each of the following matrices A, find the eigenvalues λ of A and for each λ determine a maximal set of linearly independent eigenvectors associated to λ. Say then if the matrix is diagonalizable or not, and motivate your answer. In the case A is diagonalizable, determine an invertible matrix P such that $P^{-1} A P=D$ is diagonal.

1. $A=\left(\begin{array}{ccc}2 & 0 & 1 \\ -1 & 2 & 3 \\ 1 & 0 & 2\end{array}\right)$
2. $\quad A=\left(\begin{array}{ccc}6 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & -1\end{array}\right)$
3. $A=\left(\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1\end{array}\right)$

Eigenvalues and Eigenvectors - Answers 2

1. The characteristic equation of A is $\operatorname{det}(A-\lambda I)=(2-\lambda)\left(\lambda^{2}-4 \lambda+3\right)=0$, so the eigenvalues are $\lambda=1,2$ and 3 . Each eigenvalue has only one linearly independent eigenvector. The eigenvalue $\lambda=1$ has $\left(\begin{array}{c}1 \\ 4 \\ -1\end{array}\right)$ as an eigenvector, while $\lambda=2$ has $\left(\begin{array}{c}0 \\ -1 \\ 0\end{array}\right)$ and $\lambda=3$ has $\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$.
Since there are three linearly independent eigenvectors, A is diagonalizable.
The matrix P is constructed by taking the eigenvectors and making them the columns of P. Then

$$
P^{-1} A P=\left(\begin{array}{ccc}
1 & 0 & 1 \\
4 & -1 & 2 \\
-1 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{ccc}
2 & 0 & 1 \\
-1 & 2 & 3 \\
1 & 0 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
4 & -1 & 2 \\
-1 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)=D .
$$

2. The characteristic equation of A is $\operatorname{det}(A-\lambda I)=(1+\lambda)\left(\lambda^{2}-9 \lambda+14\right)=0$, so the eigenvalues are $\lambda=-1,2$ and 7 . Each eigenvalue has only one linearly independent eigenvector. The eigenvalue $\lambda=-1$ has $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ as an eigenvector, while $\lambda=2$ has $\left(\begin{array}{c}1 \\ -2 \\ 0\end{array}\right)$ and $\lambda=7$ has $\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$.
Since there are three linearly independent eigenvectors, A is diagonalizable.
The matrix P is constructed by taking the eigenvectors and making them the columns of P. Then

$$
P^{-1} A P=\left(\begin{array}{ccc}
0 & 1 & 2 \\
0 & -2 & 1 \\
1 & 0 & 0
\end{array}\right)^{-1}\left(\begin{array}{ccc}
6 & 2 & 0 \\
2 & 3 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 2 \\
0 & -2 & 1 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 7
\end{array}\right)=D .
$$

3. The characteristic equation of A is $\operatorname{det}(A-\lambda I)=\lambda(2-\lambda)(\lambda-3)=0$, so the eigenvalues are $\lambda=0,2$ and 3 . Each eigenvalue has only one linearly independent eigenvector. The eigenvalue $\lambda=0$ has $\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)$ as an eigenvector, while $\lambda=2$ has $\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$ and $\lambda=3$ has $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
Since there are three linearly independent eigenvectors, A is diagonalizable.
The matrix P is again constructed by taking the eigenvectors and making them the columns of P. Then

$$
P^{-1} A P=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1 \\
-2 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1 \\
-2 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)=D .
$$

